Home > Math Shortcuts > Derivative Mathematical Formulas
Advertisement

Derivative Mathematical Formulas

Advertisement

Derivative Mathematical Formulas

 

LIMIT EVALUATION AT +- ∞

  • \lim\limits_{x \to \infty } e^{x} = \infty
  • \lim\limits_{x \to -\infty } e^{x} = 0
  • Advertisement
  • \lim\limits_{x \to \infty} lnx = \infty
  • \lim\limits_{x \to \infty} \frac{c}{x^{n}} = 0 \left ( n > 0 \right )
  • \lim\limits_{x \to \infty} \frac{x}{\sqrt[x]{x!}} = e
  • \lim\limits_{x \to \infty} \left ( 1 + \frac{k}{x} \right )^{x} = e^{k}, e = 2.71
  • \lim\limits_{x \to \infty} \left ( 1 - \frac{1}{x} \right )^{x} = \frac{1}{e}
  • \lim\limits_{x \to \infty} x \left ( \frac{\sqrt{2\Pi x}}{x!} \right )^{\frac{1}{x}} = e
  • \lim\limits_{x \to \infty} \frac{x!}{x^{x}e^{-x}\sqrt{x}} = \sqrt{2\Pi }
  • \lim\limits_{x \to \infty} log_{a}\left ( 1 + \frac{1}{x} \right )^{x} = log_{a} e

 

PROPERTIES OF LIMITS

  • \lim\limits_{x \to a}[Cf\left ( x \right )] = C \lim_{x \to a}[f\left ( x \right )]
  • \lim\limits_{x \to a}[f\left ( x \right )]^{n} = [\lim_{x \to a} f\left ( x \right )]^{n}

 

 

Advertisement

LIMIT EVALUATION AT ZERO

  • \lim\limits_{x \to 0} a^{x} = 1
  • \lim\limits_{x \to 0} \frac{log_{e}\left ( 1+x \right )}{x} = 1
  • \lim\limits_{x \to 0} \frac{x}{log_{a}\left ( 1+x \right )} = \frac{1}{log_{a}e}
  • \lim\limits_{x \to 0} \frac{a^{x}-1}{x} = ln a, a > 0
  • \lim\limits_{x \to 0} \frac{sin x}{x} = 1
  • \lim\limits_{x \to 0} \frac{tan x}{x} = 1
  • \lim\limits_{x \to 0} \frac{1 - cos x}{x} = 0
  • \lim\limits_{x \to 0} \frac{1 - cos x}{x^{2}} = \frac{1}{2}
  • \lim\limits_{x \to 0} \frac{arcsin x}{x} = 1
  • \lim\limits_{x \to 0} \frac{arctan x}{x} = 1
  • \lim\limits_{x \to 1} \frac{ \left ( arccos x \right )^{2}}{1-x} = 2

 

 

Derivative Definition

  • \frac{d}{dx}\left ( f\left ( x \right ) \right ) = f'\left ( x \right ) = \lim_{h \to 0}\frac{f\left ( x+h \right )-f\left ( x \right )}{h}

 

 

Advertisement

Basic Properties

  • \left ( cf\left ( x \right ) \right )' = c\left ( f'\left ( x \right ) \right )
  • \left ( f\left ( x \right )\pm g\left ( x \right ) \right )' = f'\left ( x \right )\pm g'\left ( x \right )
  • \frac{d}{dx}\left ( c \right )=0

 

 

Mean Value Theorem

  • f'\left ( c \right ) = \frac{f\left ( b \right )-f\left ( a \right )}{b-a}

 

 

Quotient Rule

  • \frac{d}{dx}\left ( \frac{f\left ( x \right )}{g\left ( x \right )} \right ) = \frac{f'\left ( x \right )g\left ( x \right )-f\left ( x \right )g'\left ( x \right )}{\left [ g\left ( x \right ) \right ]^{2}}

 

Advertisement

 

Power Rule

  • \frac{d}{dx}\left ( x^{n} \right ) = nx^{n-1}

 

 

Chain Rule

  • \frac{d}{dx}\left ( f\left ( g\left ( x \right ) \right ) \right ) = f'\left ( g\left ( x \right ) \right )g'\left ( x \right )

 

Advertisement

 

Limit Evaluation Method

  • \lim\limits_{x \to -3}\frac{x^{2}-x-12}{x^{2}+3x} = \lim\limits_{x \to -3}\frac{\left ( x+3 \right )\left ( x-4 \right )}{x\left ( x+3 \right )} = \lim\limits_{x \to -3}\frac{\left ( x-4 \right )}{x} = \frac{7}{3}

 

 

L’Hopital’s Rule

  • \lim\limits_{x \to a}\frac{f\left ( x \right )}{g\left ( x \right )} = \frac{0}{0} or \frac{\pm \infty }{\pm \infty } then \lim\limits_{x \to a}\frac{f\left ( x \right )}{g\left ( x \right )} = \lim\limits_{x \to a}\frac{f'\left ( x \right )}{g'\left ( x \right )}

 

 

Advertisement

Common Derivatives

  • \frac{d}{dx}\left ( x \right ) = 1
  • \frac{d}{dx}\left ( sin x \right ) = cos x
  • \frac{d}{dx}\left ( cos x \right ) = -sin x
  • \frac{d}{dx}\left ( tan x \right ) = sec^{2} x
  • \frac{d}{dx}\left ( sec x \right ) = sec x tan x
  • \frac{d}{dx}\left ( csc x \right ) = -csc x cot x
  • \frac{d}{dx}\left ( cot x \right ) = -csc^{2} x
  • \frac{d}{dx}\left ( sin^{-1} x \right ) = \frac{1}{\sqrt{1-x^{2}}}
  • \frac{d}{dx}\left ( cos^{-1} x \right ) = -\frac{1}{\sqrt{1-x^{2}}}
  • \frac{d}{dx}\left ( tan^{-1} x \right ) = -\frac{1}{1+x^{2}}
  • \frac{d}{dx}\left ( a^{x} \right ) = a^{x} ln\left ( a \right )
  • \frac{d}{dx}\left ( e^{x} \right ) = e^{x}
  • \frac{d}{dx}\left ( ln\left ( x \right ) \right ) = \frac{1}{x}, x>0
  • \frac{d}{dx}\left ( ln\left | x \right | \right ) = \frac{1}{x}
  • \frac{d}{dx}\left ( log_{a}\left ( x \right ) \right ) = \frac{1}{x ln\left ( a \right )}

 

 

Chain Rule and Other Examples

  • \frac{d}{dx}\left ( \left [ f\left ( x \right ) \right ]^{n} \right ) = n\left [ f\left ( x \right ) \right ]^{n-1}f'\left ( x \right )
  • \frac{d}{dx}\left ( e^{f\left ( x \right )} \right ) = f'\left ( x \right )e^{f\left ( x \right )}
    \frac{d}{dx}\left ( ln\left [ f\left ( x \right ) \right ] \right ) = \frac{f'\left ( x \right )}{f\left ( x \right )}
  • \frac{d}{dx}\left ( sin\left [ f\left ( x \right ) \right ] \right ) = f'\left ( x \right )cos\left [ f\left ( x \right ) \right ]
  • \frac{d}{dx}\left ( cos\left [ f\left ( x \right ) \right ] \right ) = -f'\left ( x \right )sin\left [ f\left ( x \right ) \right ]
  • \frac{d}{dx}\left ( tan\left [ f\left ( x \right ) \right ] \right ) = f'\left ( x \right )sec^{2}\left [ f\left ( x \right ) \right ]
  • \frac{d}{dx}\left ( sec\left [ f\left ( x \right ) \right ] \right ) = f'\left ( x \right )sec\left [ f\left ( x \right ) \right ]tan\left [ f\left ( x \right ) \right ]
  • \frac{d}{dx}\left ( tan^{-1}\left [ f\left ( x \right ) \right ] \right ) = \frac{f'\left ( x \right )}{1+\left [ f\left ( x \right ) \right ]^{2}}
  • \frac{d}{dx}\left ( f\left ( x \right )^{g\left ( x \right )} \right ) = f\left ( x \right )^{g\left ( x \right )}\left ( \frac{g\left ( x \right )f'\left ( x \right )}{f\left ( x \right )}+ln \left ( f\left ( x \right ) \right )g'\left ( x \right ) \right )

 

 

Properties of Limit

  • \lim\limits_{x \to a}\left [ f\left ( x \right )\pm g\left ( x \right ) \right ] = \lim\limits_{x \to a} f\left ( x \right )\pm \lim\limits_{x \to a} g\left ( x \right )
  • \lim\limits_{x \to a}\left [ f\left ( x \right ) g\left ( x \right ) \right ] = \lim\limits_{x \to a} f\left ( x \right ) \lim\limits_{x \to a} g\left ( x \right )
  • \lim\limits_{x \to a}\left [ \frac{f\left ( x \right )}{g\left ( x \right )} \right ] = \frac{\lim\limits_{x \to a}f\left ( x \right )}{\lim\limits_{x \to a}g\left ( x \right )} if \lim_{x \to a}g\left ( x \right )\neq 0

 

Advertisement

 

 

We provide few shortcut tricks on this topic. Please visit this page to get updates on more Math Shortcut Tricks. You can also like our facebook page to get updates.

If You Have any question regarding this topic then please do comment on below section. You can also send us message on facebook.

Advertisement

Leave a Reply